Возможности хромато-масс-спектрометрии для диагностики микроэкологических нарушений в педиатрической практике.

Новикова В.П. СПбГПМА 2012

- Контроль микроэкологического статуса человека уже сейчас является проблемой практического здравоохранения.
- Применяемые на сегодняшний день в клинической практике методы диагностики инфекции имеют определенные ограничения и недостатки.

Классическое бактериологическое исследование

- Дороговизна
- Длительность (7-10 дней)
- Невозможность оценить роль
 некультивируемых микроорганизмов в
 инфекционно-воспалительном процессе,
 прежде всего анаэробов.

Иммуно-серологический метод

• Является непрямым - определяется не возбудитель, а иммунный ответ на него, который может иметь индивидуальные вариации.

Молекулярно-биологические методы (ПЦР, гибридизация РНК и ДНК)

преимущества

- прямое определение возбудителя
- высокие специфичность и чувствительность
- универсальность
- скорость
- возможность диагностики хронических и латентных инфекций

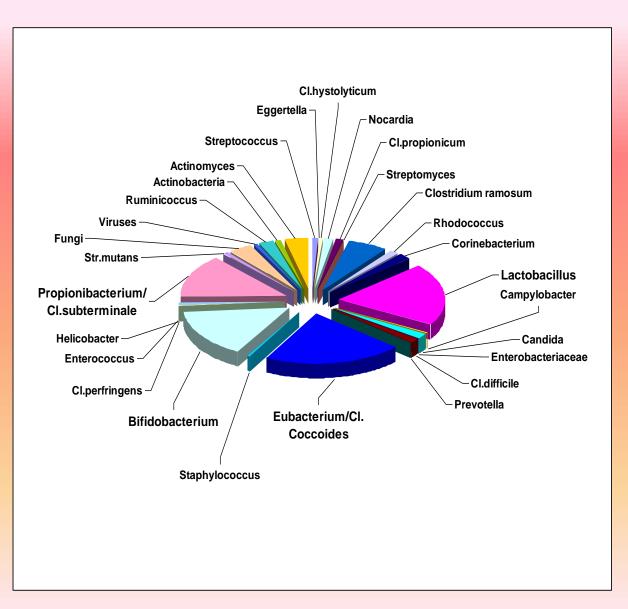
недостатки

- частые ложноположительные результаты
- невозможность адекватной количественной оценки.

Persing, 1991; Fenollar, 2006; Михайлова, 2008.

- Контролировать состав пристеночной микробиоты кишечника и других органов оказалось возможным с помощью метода газовой хроматографии в сочетании с массспектрометрией по содержащимся в клеточной стенке длинноцепочечным жирным кислотам (ЖК) и жирным альдегидам фосфолипидов.
- Известно, что состав жирных кислот микроорганизмов видоспецифичен и используется для их идентификации в чистой культуре.

(Chemical methods.., 1995;


Stead, 1992).

• Метод детектирования микроорганизмов по видоспецифичным высшим жирным кислотам клеточной стенки сходен с генетическим анализом, поскольку состав жирных кислот детерминирован в ДНК и воспроизводится путем репликации участка генома транспортными РНК и последующего синтеза ЖК в митохондриях по матричным РНК.

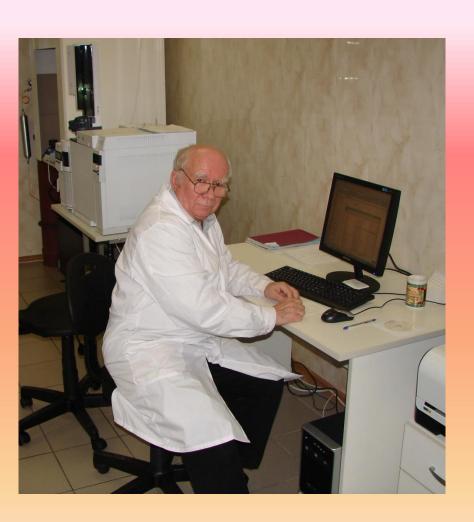
- Существо анализа состоит в прямом извлечении с помощью химической процедуры высших жирных кислот из образца, подлежащего исследованию (например, биоптата кишечной стенки или крови), их разделения на хроматографе в капиллярной колонке высокого разрешения и анализа состава в динамическом режиме на масс-спектрометре.
- На основании этих измерений расшифрован состав микробиоты пристеночного мукозного слоя этих отделов кишечника, а также фекалий

(Осипов, 2003).

Концентрация микроорганизмов пристеночного слоя кишечника в биоптатах кишечной стенки здоровых людей

Концентрация микробных маркеров в биоптатах кишечной стенки здоровых людей по порядку величины оказалась одинаковой для тощей, подвздошной и толстой кишок $(0,6-1)\times 10^{11}$ кл/г, но существенно меньшей по сравнению с фекалиями $2,7 \times 10^{11} \text{ кл/г}$).

- Основную долю (от 70% в тощей кишке до 88% в фекалиях) микроорганизмов во всех отделах кишечника составляют анаэробы.
- Второе место по численности в тощей кишке занимают актинобактерии (кроме бифидо- и пропионобактерий) 17% (в фекалиях их всего 0,7 %).
- Аэробные кокки (стафилококки, стрептококки, энтерококки и коринеформные бактерии) – составляют 5% колонизации тонкой кишки по сравнению с 0,7 % в фекалиях.
- Доля энтеробактерий и энтерококков по отделам кишечника и в фекалиях близка к 2%.
- Кишечная микробиота представляет собой доминирующий континуум штаммов и видов родов Clostridium и Eubacterium в их современном написании при равновеликом суммарном количестве бифидобактерий, пропионобактерий и лактобацилл.
- На долю остального биоразнообразия микроорганизмов кишечника (по данным масс-спектрометрии) приходится до 10% в фекалиях и пристеночном слое ободочной кишки и до 30% в тощей кишке.


(Osipov, 2009).

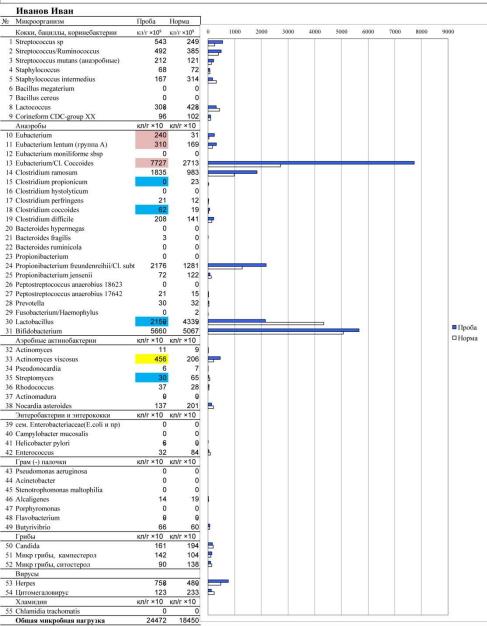
- Обнаруженный в результате систематических исследований гомеостаз микробных маркеров в крови и адекватность его профиля составу кишечной микрофлоры здорового человека обеспечил уникальную возможность мониторировать состояние микробиоты кишечника неинвазивным экспрессным методом по анализу крови.
- Метод позволяет одновременно контролировать маркеры практически всех клинически значимых микроорганизмов – симбионтов человека.

- Метод является высокочувствительным, экспрессным (2,5 часа на полный цикл исследования), универсальным, экономичным и имеет широкий диагностический спектр.
- Он легко поддается стандартизации, для его реализации используются доступные любым лабораториям химические реактивы и методики пробоподготовки.
- Метод автоматизирован, что обуславливает простоту лабораторной диагностики.
- Обеспечивает возможность при проведении анализа одного образца одновременного детектирования десятков маркеров микроорганизмов и 122 вещества из состава ЖК, стеринов и спиртов.

- Методика отработана на хромато-масс-спектрометрах АТ 5973(75) фирмы Agilent Technologies, США, и аналогичных приборах фирм Вариан (Polaris, DSQ-II) (США-Россия), Shimadzu (Япония) и Micromass (Великобритания) состоящих из собственно масс-спектрометра, соединенного с ним хроматографа, системы вакуумной откачки и ЭВМ с периферийными устройствами.
- Для реализации метода принципиально необходимо, чтобы ГХ-МС система обеспечивала работу в режиме селективных ионов (синонимы массфрагментография, Single Ion Monioring).
- Масс-спектрометр квадрупольный с диапазоном масс 2-1000 аем, имеет разрешающую способность 0,5 аем во всем рабочем диапазоне. Чувствительность прибора 50 пг по метил-стеарату в режиме непрерывного сканирования и 1 пг. в режиме селективных ионов.
- Для анализа используют кварцевую капиллярную колонку с неподвижной фазой HP-5 ms.
- Для обсчета данных на персональном компьютере разработан алгоритм который можно использовать на PC с операционной системой Windows 2000 или XP, NT.

Патенты

- Осипов Г.А. Способ определения родового (видового) состава ассоциации микроорганизмов. //Патент РФ № 2086642. C12N 1/00, 1/20, C12Q 1 /4. Приоритет от 24 дек.1993г
- Осипов Г.А. Шабанова Е.А. Недорезова
 Т.П. Истратов В.Г. Сергеева Т.И. Способ
 диагностики клостридиальной
 анаэробной газовой инфекции. Патент
 РФ №2021608 кл.G01N 33/50.Зарегистрировано в гос.реестре
 15.10.94.- Бюл.№19.
- Осипов Г.А., Белобородова Н.В. Патент на изобретение № 2146368 «Способ выявления возбудителя инфекционного процесса в стерильных биологических средах макроорганизма», Патент зарегистрирован в Госреестре изобретений РФ 10.03 2000 г


Литература

- Роль анаэробов в возникновении урогенитальных инфекций.
 Пособие для врачей. Утверждено секцией №14 Ученого Совета МЗ
 РФ по проблеме "Кожные болезни, заболевания, передаваемые половым путем" Протокол №3 от 9 сентября 1997 г. ЦНИКВИ, 1998, 16 с.
- Бондаренко В.М., Грачева Н.М., Мацулевич Т.В. «Дисбактериозы кишечника у взрослых», КМК Scientific Press, Москва 2003, с. 88-98
- Осипов Г.А., Крымцева Т.А., Осипов Д.Г., Столярова О.Н. Функциональные изменения жирнокислотного состава урогенитальных жидкостей организма человека при дисбиозах. Учебно-методическая литература. Прометей. Москва, 2005, 85с.
- Бондаренко В.М., Мацулевич Т.В. Дисбактериоз кишечника как клинико-лабораторный синдром. Руководство для врачей. Москва, издательская группа «ГЭОТАР-Медиа», 2007, с. 134-138.

Нозологическая специфичность изменений состава кишечной микробиоты

- Метод масс-спектрометрии микробных маркеров, благодаря своей экспрессности и информативности, позволил получить экспериментальные данные, подтверждающие связь ряда заболеваний с изменением микроэкологического статуса организма.
- Например, при синдроме раздраженного кишечника наблюдается тотальный дефицит кишечной микробиоты до семикратного снижения общей численности микроорганизмов при избыточном росте эубактерий и стрептококков.

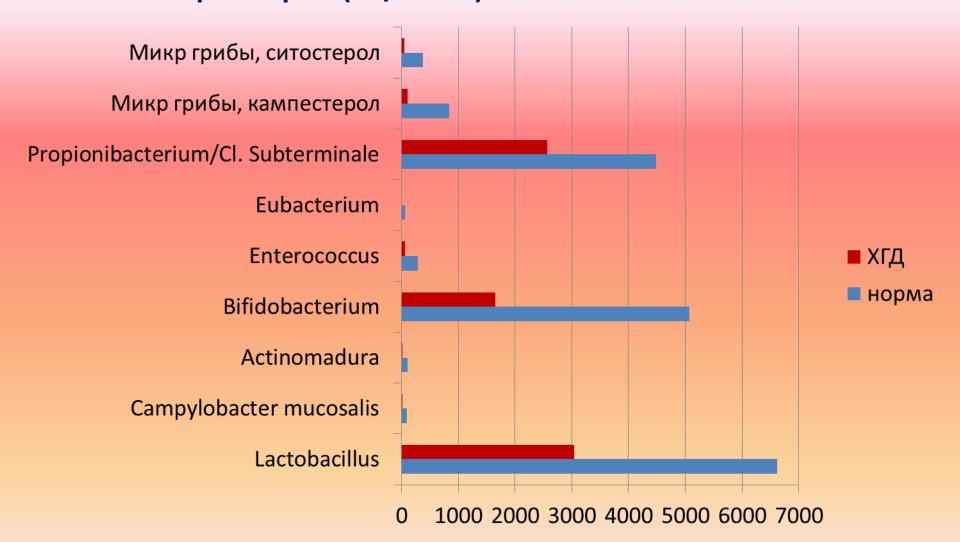
Результаты исследования состава микробных маркеров в крови методом газовой хроматографии - масс-спектрометрии. Метод сертифицирован Росздравнадзором. Разрешение ФС 2010/038 от 24.02.2010
Лицензия на осуществление медицинской деятельности № 78-01-002528 от 13 января 2012 г.
Выполнено Центром дисбиозов С-Петербург, Б. Сампсониевский пр., 60 лит А, тел/факс 336 93 95

Выполнено 16.05.2012. Общая микробная нагрузка повышена.

Превышение более чем в три раза -Превышение более чем в два раза -Лефинат более чем в два раза -

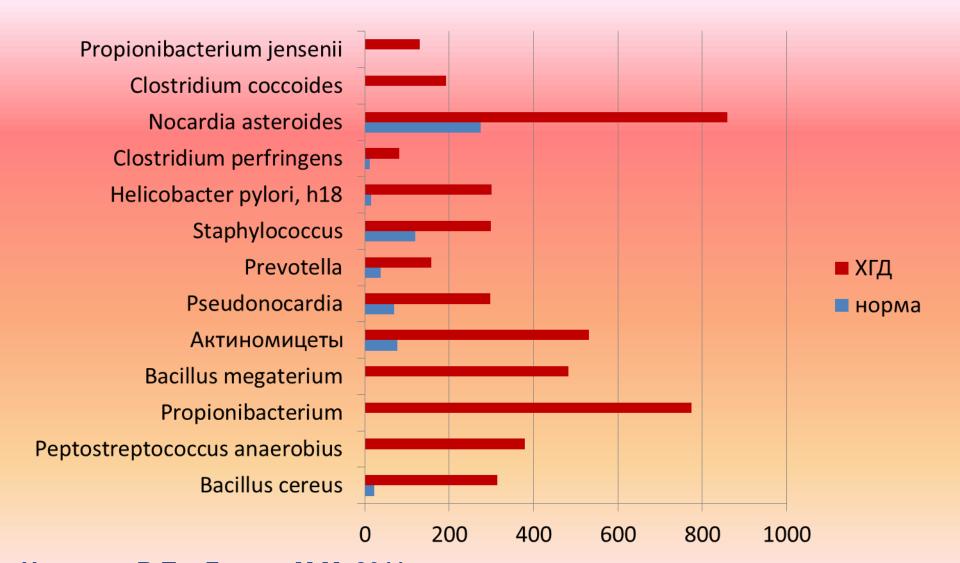
..

Лаборатория микробной хроматографии

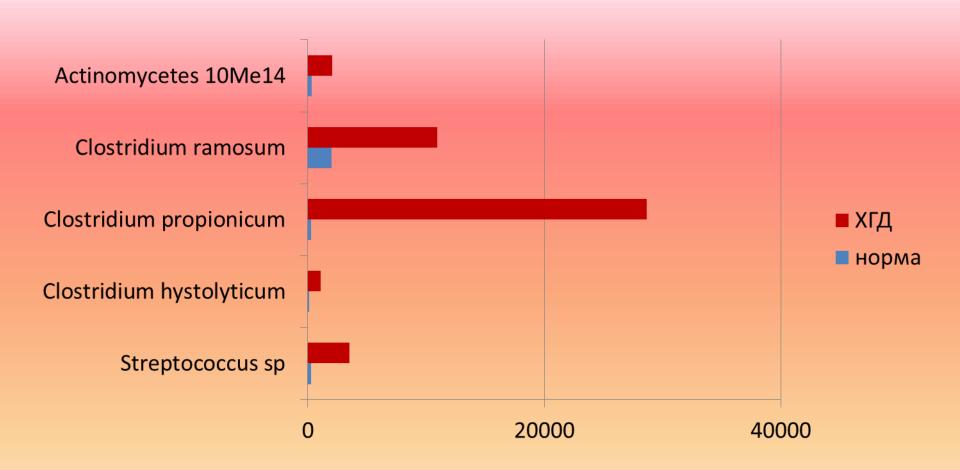

Прием биоматериалов:

- СПб -медицинские офисы «Витамед» ул. Ак. Лебедева д.10 лит А
- А так же в Петрозаводске и Калининграде

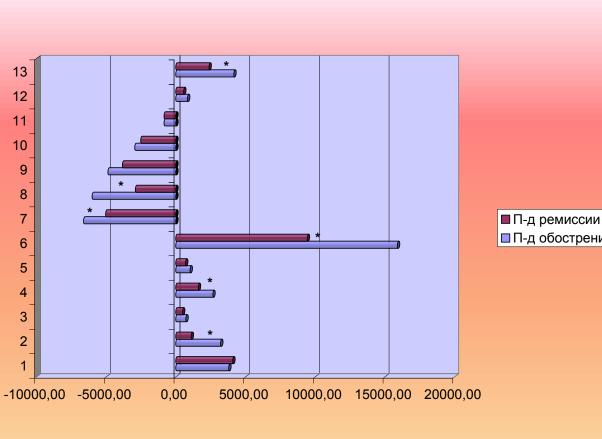
Все адреса представлены на сайте: dysbio.ru


Разработан автоматический алгоритм анализа с помощью штатных программ ГХ-МС, позволяющих определить концентрацию более 50 микроорганизмов в материале через три часа после его поступления в лабораторию.

• Снижение титра некоторых бактерий в пристеночной микрофлоре тонкой кишки у детей при ХГД по результатам масс-спектрометрии (кл/гх10⁵).


НовиковаВ.П., Гурова М.М. 2011

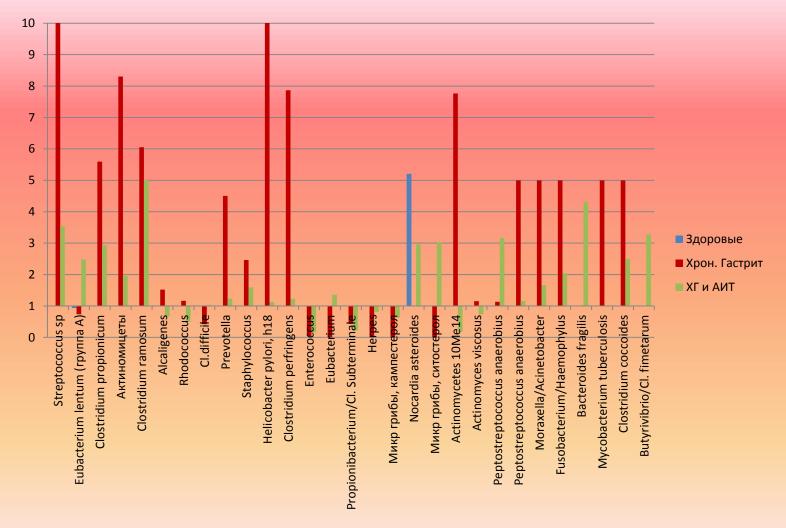
Повышение титра некоторых бактерий в пристеночной микрофлоре тонкой кишки у детей при ХГД по результатам масс-спектрометрии (кл/гх10⁵)



НовиковаВ.П., Гурова М.М. 2011

Повышение титра некоторых бактерий в пристеночной микрофлоре тонкой кишки у детей при ХГД по результатам масс-спектрометрии (кл/гх10⁵)

Состояние пристеночной микрофлоры в периоде обострения и ремиссии


* - p<0,01 По оси X – показано содержание микроорганизмов в Кл/г x 105

1 – Streptococcus, 2 - Clostridium hystolyticum, 3 - Peptostreptococcus anaerobius, 4 - Clostridium propionicum, □П-д обострения5 — АКТИНОМИЦЕТЫ, 6 - Clostridium ramosum, 7 – *Lactobacillus*, 8 - E.moniliforme, E.nodatum, E.sabureum, 9 – Bifidobacterium, 10 – Propionibacterium, 11 — Микр. грибы, кампестерол, 12 - Nocardia asteroides,

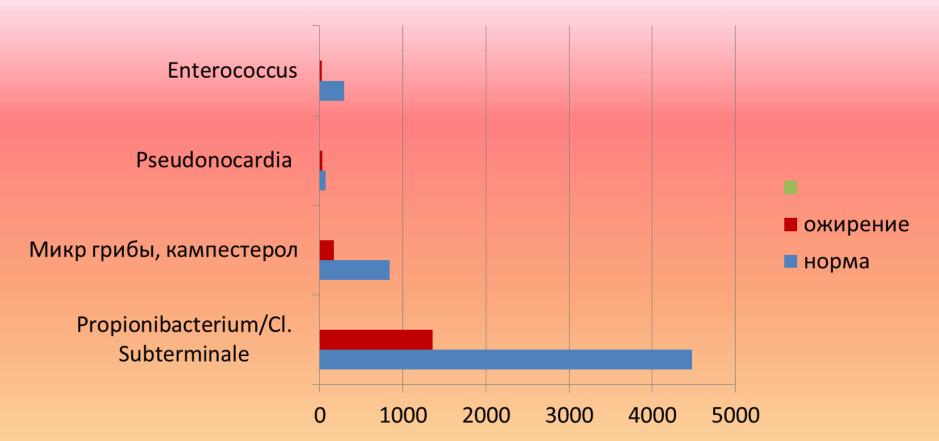
13 - Actinomycetes 10Me14.

НовиковаВ.П., Гурова М.М. 2011

Особенности пристеночной микрофлоры тонкой кишки у детей при ХГД и сопутствующем АИТ по результатам масс-спектрометрии (кл/гх10⁵).

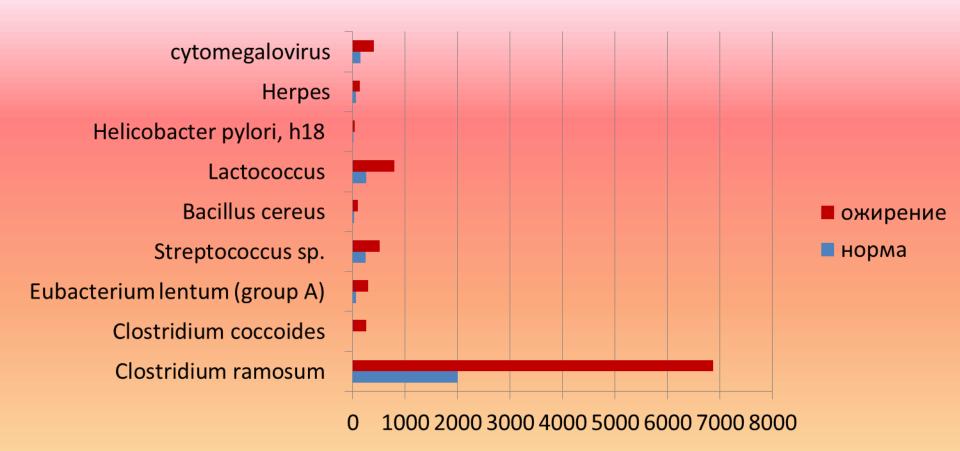
В.П. Новикова, Е.А. Земскова, И.Ю. Мельникова, 2012

Избыточный рост кишечной микробиоты при ХГ и АИТ <u>(кл/гх 10⁵)</u>

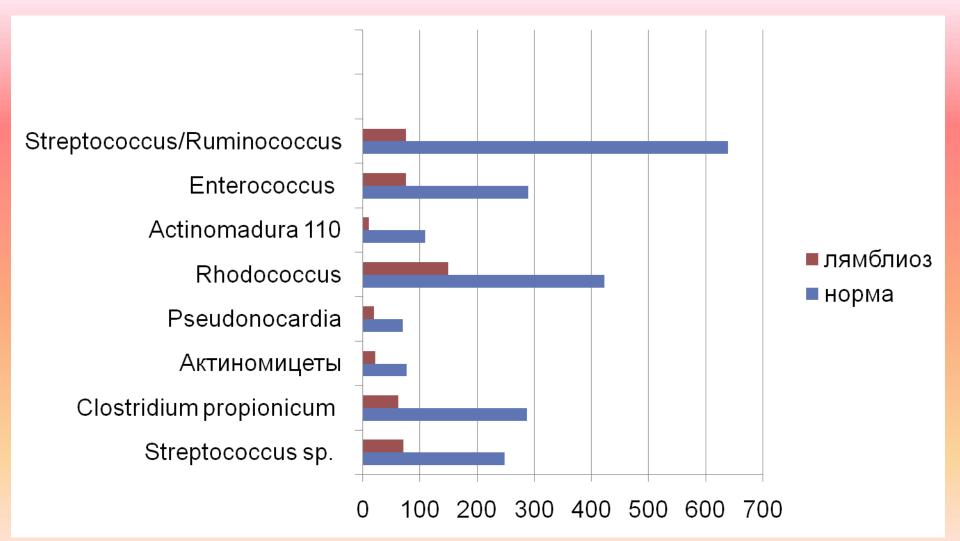

Группа	3доровые	ХГ	ХГ+АИТ
	n=20	n=20	n=20
Eubacterium lentum	63,4±20,5*	50,0±25,6*	168,6±37,2
Peptostreptococcus anaerobius	1330,7±241,9	44,8±44,8**	722,4±139,8
Cl.difficile	374,2±35,8	161,5±20,0**	398,2±69,5
Bacteroides fragilis	6,5±4,9	0,0±0,0**	5,4±1,9
Enterococcus	42,3±15,0	13,0±9,4**	47,1±12,5
Eubacterium	105,66±46,07	0,0±0,0**	80,0±18,66
Herpes	67,1±14,0	0,0±0,0**	47,9±18,7
Микр грибы, кампестерол	530,3±74,3	0,0±0,0**	529,4±89,4
Микр грибы, ситостерол	1097,5±111,3	0,0±0,0**	1162,3±221,3
Butyrivibrio/Cl. Fimetarum p < 0.05 ** p	47,3±19,7	0,0±0,0*	26,9±12,2

Дефицит кишечной микробиоты при ХГ и АИТ $(кл/гх 10^5)$

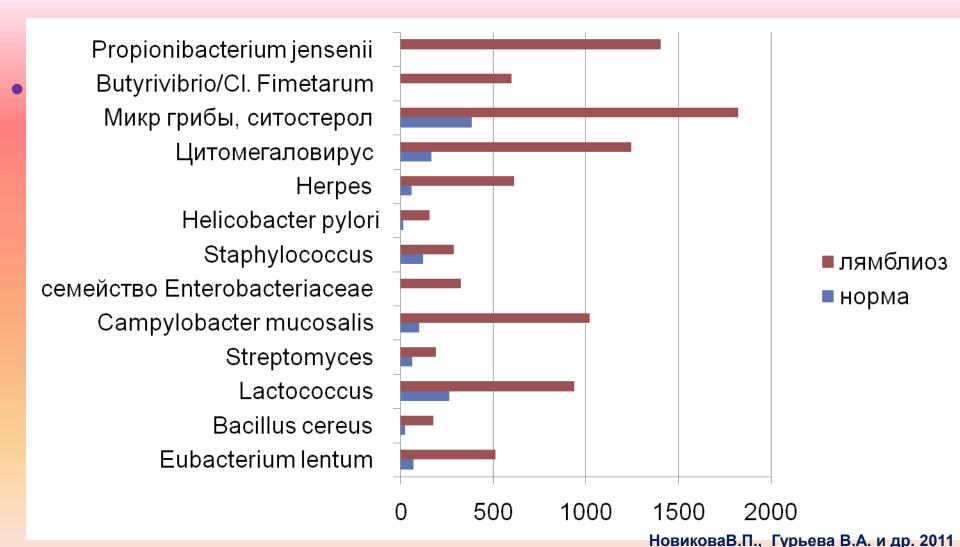
Группа	3доровые	хг	ΧΓ+ΑΝΤ
	n=20	n=20	n=20
Streptococcus sp	1195,3±272,2	3969±570**	881,3±120,6
Peptostreptococcus anaerobius	72,0±38,1	492,0±64,9**	19,4±19,4
Moraxella/Acinetobacter	1,2±1,2	19,3±3,8*	3,2±2,4
Актиномицеты	263,4±61,0	639,3±66,8**	151,1±19,3
Fusobacterium/Haemophylus	0,3±0,3	22,3±1,1*	5,8±5,4
Alcaligenes	29,0±5,3	73,0±8,2*	31,8±7,5
Rhodococcus	205,6±28,1	491,2±44,3**	208,8±28,8
Prevotella	54,7±20,1	171,2±10,9**	46,9±8,6
Staphylococcus	172,9±17,8	295,4±18,0*	191,0±36,2
Helicobacter pylori, h18	19,7±10,5	338,5±16,7**	15,8±4,1
Propionibacterium/Cl. Subt.	706,2±73,0	1915±252**	964,1±176,2
Mycobacterium tuberculosis	0,0±0,0	200,7±47,3**	0,0±0,0
Actinomycetes 10Me14	1,0±1,0	2398±198**	55,4±53,0
Clostridium coccoides	94,0±13,9	215,3±14,4**	80,7±9,1
Actinomyces viscosus	1137,8±134,3	1371,6±276,4*	873,6±132,2
Nocardia asteroides	1426,9±174,5*	813,2±140,5	810,8±154,5
Clostridium perfringens $* - p < 0$,	05 **p <0,01	94.4+7.2*	14.66+3.15


- Единственным возбудителем, который достоверно больше встречался в группе пациентов с ХГ и АИТ как по сравнению с группой пациентов с ХГ, так и по сравнению с группой здоровых детей- Eubacterium lentum (p<0,05).</p>
- ▶ Выявлена корреляционная взаимосвязь между концентрацией Eubacterium lentum и уровнем гормонов щитовидной железы : Т4-r= -0,683, p<0,05 , ТТГ-r=0,734, p<0,05 и объемом щитовидной железы по результатам УЗИ-r= -0,658, p<0,05.</p>
- Отмечается корреляционная взаимосвязь между концентрацией *Eubacterium lentum* и степенью фиброза антрального отдела желудка –r=-0,52, p<0,05 при гистологическом исследовании биоптатов.

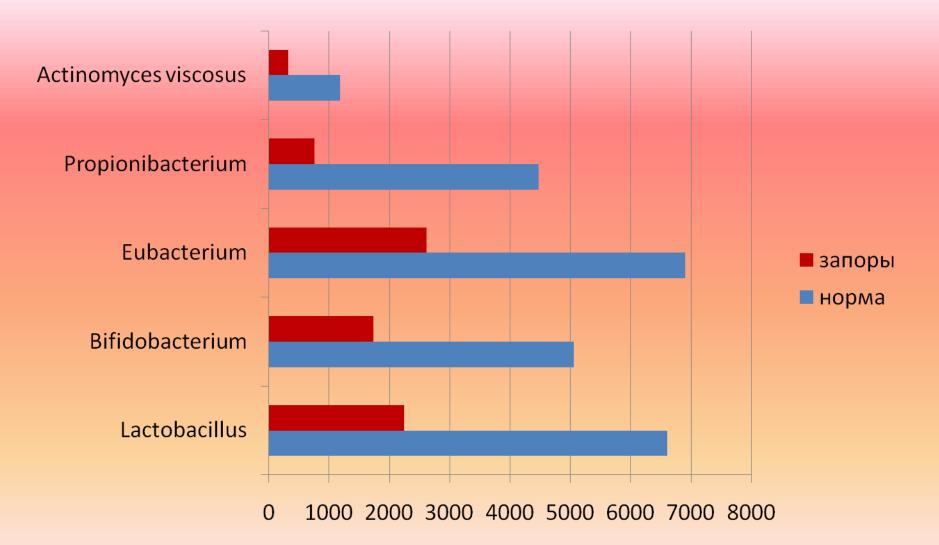
Снижение титра представителей нормальной пристеночной микрофлоры тонкой кишки у детей при ожирении по результатам масс-спектрометрии (кл/гх10⁵).


Новикова В.П., Алешина Е.И. и др. 2012

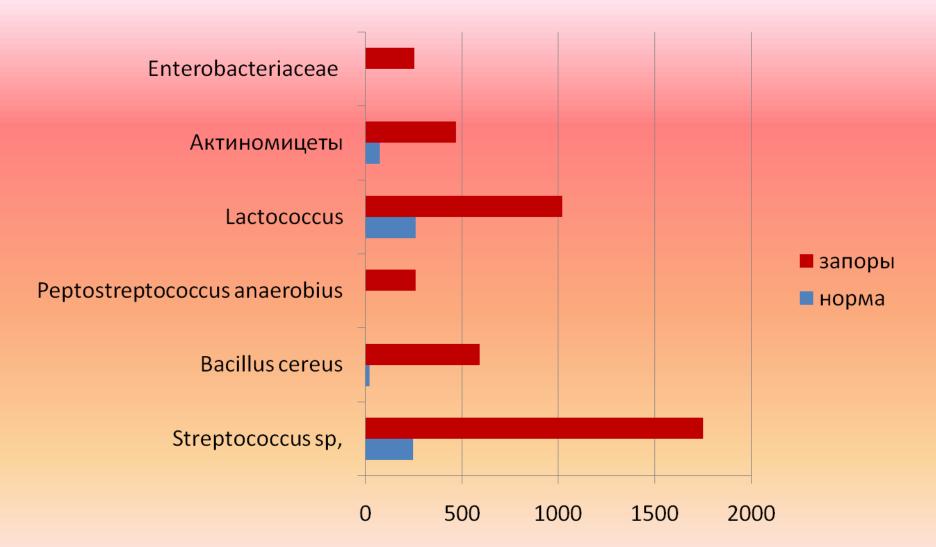
Повышение титра некоторых бактерий в пристеночной микрофлоре тонкой кишки у детей при ожирении по результатам масс-спектрометрии (кл/гх10⁵)


Новикова В.П., Алешина Е.И. и др. 2012

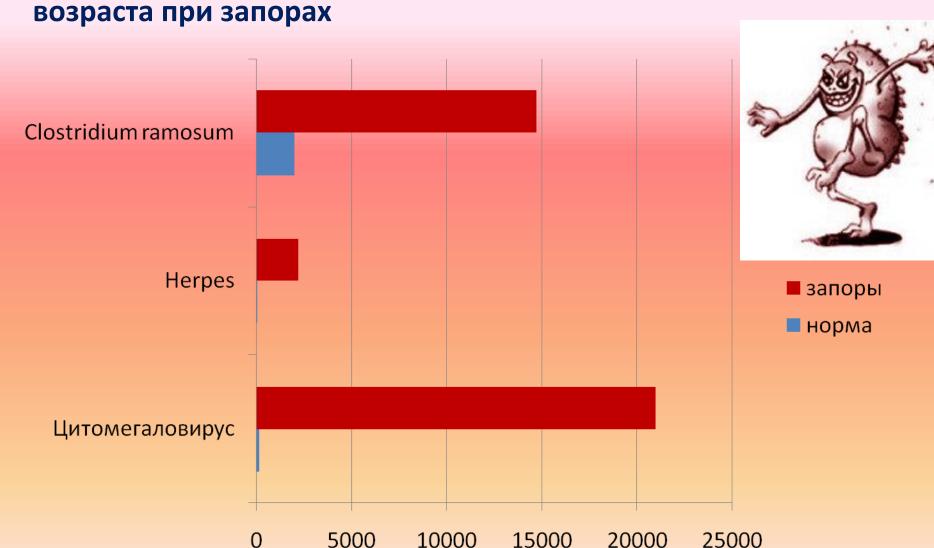
• Снижение титра представителей нормальной пристеночной микрофлоры тонкой кишки у детей при лямблиозе по результатам масс-спектрометрии (кл/гх10⁵)

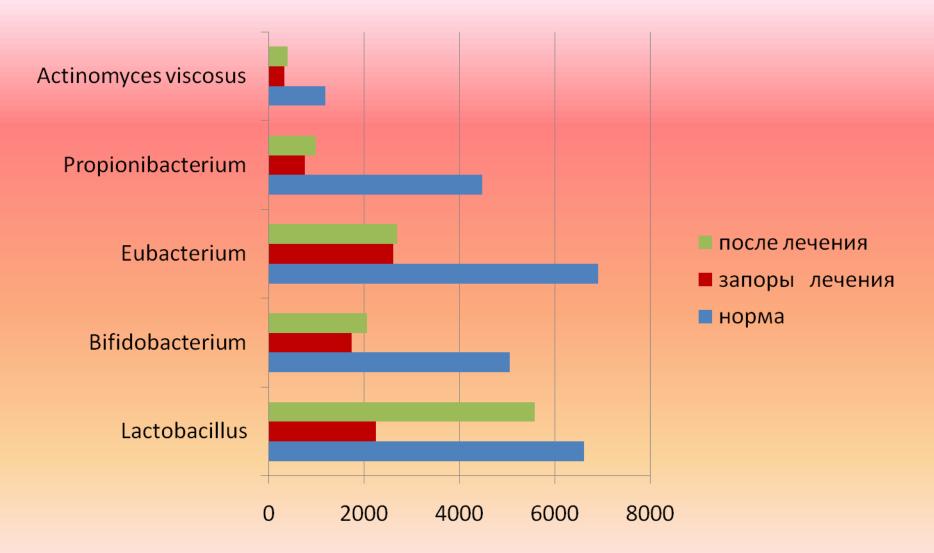

НовиковаВ.П., Гурьева В.А. и др. 2011

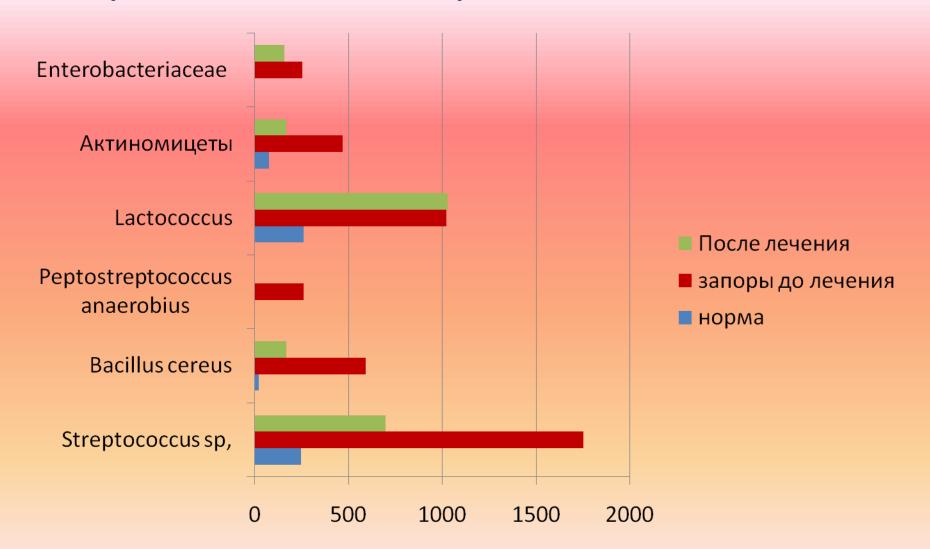
Повышение титра некоторых бактерий в пристеночной микрофлоре тонкой кишки у детей при лямблиозе по результатам масс-спектрометрии (кл/гх10⁵)

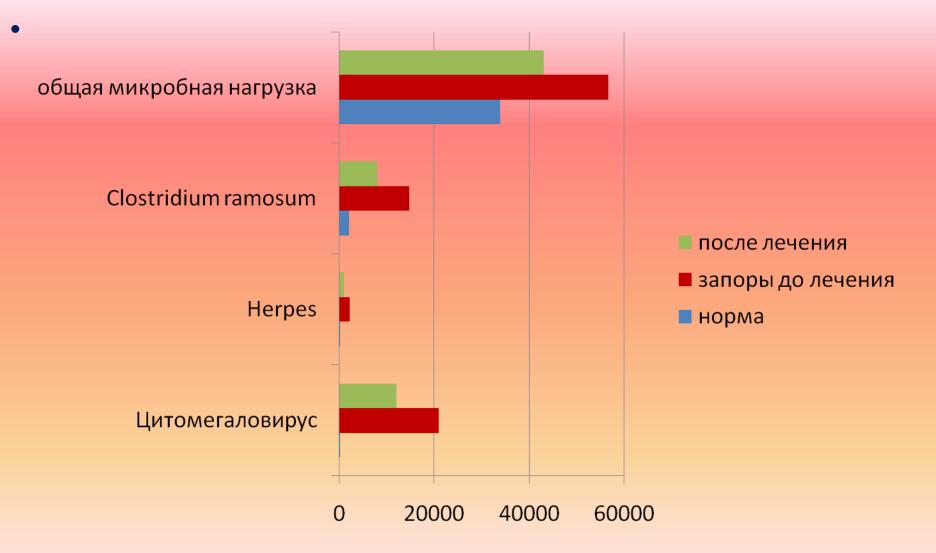


Clostridium ramosum (2000 кл/гх10⁵ и 7083±343 кл/гх10⁵


Снижение титра представителей нормальной пристеночной микрофлоры тонкой кишки у детей раннего возраста при запорах


Повышение титра некоторых бактерий в пристеночной микрофлоре тонкой кишки у детей раннего возраста при запорах


• Повышение титра некоторых бактерий и вирусов в пристеночной микрофлоре тонкой кишки у детей раннего

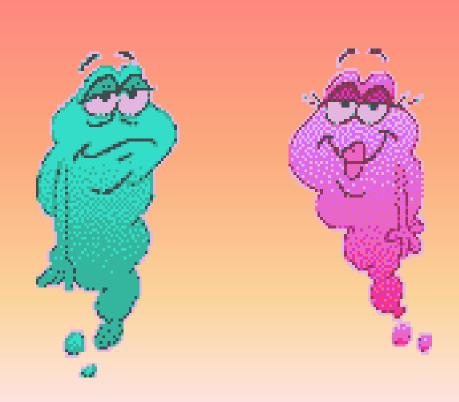

Динамика титра представителей нормальной пристеночной микрофлоры тонкой кишки у детей раннего возраста при запорах после лечения Экспорталом

 Динамика титра некоторых бактерий в пристеночной микрофлоре тонкой кишки у детей раннего возраста при запорах после лечения Экспорталом

 Динамика титра некоторых бактерий и вирусов в пристеночной микрофлоре тонкой кишки у детей раннего возраста при запорах после лечения Экспорталом

Взаимосвязь отдельных представителей микрофлоры

рзаимосьязь отдельных представителей микрофлоры				
кишечника и клинических симптомов				
Симптомы, с которыми выявлена	Представитель биоценоза			
положительная корреляция				
Боли в животе около пупка	Claropionioum			
Отрыжка воздухом	Cl.propionicum			
Рвота				
Необходимость дополнительных усилий при				
дефекации				
Боли по всему животу	CI rom cours			
Тошнота по утрам	Cl.ramosum			
Метеоризм				
Бледность кожных покровов				
Неустойчивый стул				


Жирный стул Появление слизи в стуле Непереваренный стул Энтеритный копрологический синдром Беспокойный сон и ранние пробуждения Пузырные симптомы Пептострептококки

Уровень ДАД

Заключение:

- 1. ГХ-МС-анализу присущи:
- широкий диагностический спектр: определение маркеров десятков микроорганизмов одновременно в одном анализе;
- универсальность: определение разных групп микроорганизмов: бактерий, грибов, вирусов;
- экспрессность: время одного анализа не более 3 часов
- высокая чувствительность: 0.01 нг/мл маркера
- селективность: определение микроорганизма до вида при наличии видового маркера
- независимость от оснащения микробиологической лаборатории и возможность прямого анализа клинических образцов без высевания и подращивания;
- экономичность: метод не требует биологических и биохимических тестовых материалов, культуральных сред, ферментов, праймеров.
- С помощью метода выявлена нозологическая специфичность микробиоценоза кишечника при ХГД, ХГД и АИТ, ожирении, лямблиозе и запорах у детей.

Благодарю за внимание

